Disco Duro |
Interior de un disco duro; se aprecian dosplatos con sus respectivos cabezales. |
Conectado a:
|
Fabricantes comunes:
|
En
informática, un
disco duro o
disco rígido (en inglés
Hard Disk Drive, HDD) es un
dispositivo de almacenamiento de datos no volátilque emplea un sistema de
grabación magnética para almacenar
datos digitales. Se compone de uno o más
platos o discos rígidos, unidos por un mismo
eje que gira a gran velocidad dentro de una caja metálica sellada. Sobre cada plato, y en cada una de sus caras, se sitúa un cabezal de lectura/escritura que flota sobre una delgada lámina de aire generada por la rotación de los discos.
El primer disco duro fue inventado por
IBM en 1956. A lo largo de los años, los discos duros han disminuido su precio al mismo tiempo que han multiplicado su capacidad, siendo la principal opción de
almacenamiento secundario para
PC desde su aparición en los años 1960.
1Los discos duros han mantenido su posición dominante gracias a los constantes incrementos en la densidad de grabación, que se ha mantenido a la par de las necesidades de almacenamiento secundario.
1
Para poder utilizar un disco duro, un
sistema operativo debe aplicar un
formato de bajo nivel que defina una o más
particiones. La operación de formateo requiere el uso de una fracción del espacio disponible en el disco, que dependerá del
formato empleado. Además, los fabricantes de discos duros,
unidades de estado sólido y
tarjetas flash miden la capacidad de los mismos usando
prefijos SI, que emplean múltiplos de potencias de 1000 según la normativa IEC y
IEEE, en lugar de los
prefijos binarios, que emplean múltiplos de potencias de 1024, y son los usados por
sistemas operativos de
Microsoft. Esto provoca que en algunos sistemas operativos sea representado como múltiplos 1024 o como 1000, y por tanto existan confusiones, por ejemplo un disco duro de 500
GB, en algunos sistemas operativos sea representado como 465
GiB (es decir
gibibytes; 1 GiB = 1024
MiB) y en otros como 500 GB.
Las
unidades de estado sólido tienen el mismo uso que los discos duros y emplean las mismas interfaces, pero no están formadas por discos mecánicos, sino por
memorias de
circuitos integrados para almacenar la información. El uso de esta clase de dispositivos anteriormente se limitaba a las
supercomputadoras, por su elevado precio, aunque hoy en día ya son muchísimo más asequibles para el mercado doméstico.
2
Antiguo disco duro de
IBM (modelo 62PC, «Piccolo»), de 64,5
MB, fabricado en 1979
Al principio los discos duros eran extraíbles, sin embargo, hoy en día típicamente vienen todos sellados (a excepción de un hueco de ventilación para filtrar e igualar la presión del aire).
El primer disco duro, aparecido en
1956, fue el
Ramac I, presentado con la computadora
IBM 350: pesaba una tonelada y su capacidad era de 5 MB. Más grande que una nevera actual, este disco duro trabajaba todavía con
válvulas de vacío y requería una consola separada para su manejo.
Su gran mérito consistía en el que el tiempo requerido para el acceso era relativamente constante entre algunas posiciones de memoria, a diferencia de las cintas magnéticas, donde para encontrar una información dada, era necesario enrollar y desenrollar los carretes hasta encontrar el dato buscado, teniendo muy diferentes tiempos de acceso para cada posición.
La tecnología inicial aplicada a los discos duros era relativamente simple. Consistía en recubrir con material magnético un disco de metal que era formateado en pistas concéntricas, que luego eran divididas en sectores. El cabezal magnético codificaba información al magnetizar diminutas secciones del disco duro, empleando un código binario de «ceros» y «unos». Los bits o dígitos binarios así grabados pueden permanecer intactos años. Originalmente, cada bit tenía una disposición horizontal en la superficie magnética del disco, pero luego se descubrió cómo registrar la información de una manera más compacta.
El mérito del
francés Albert Fert y al
alemán Peter Grünberg (ambos
premio Nobel de
Física por sus contribuciones en el campo del almacenamiento magnético) fue el descubrimiento del fenómeno conocido como
magnetorresistencia gigante, que permitió construir cabezales de lectura y grabación más sensibles, y compactar más los bits en la superficie del disco duro. De estos descubrimientos, realizados en forma independiente por estos investigadores, se desprendió un crecimiento espectacular en la capacidad de almacenamiento en los discos duros, que se elevó un 60 % anual en la
década de 1990.
En
1992, los discos duros de 3,5 pulgadas alojaban 250 MB, mientras que 10 años después habían superado 40
GB (40 000 MB). En la actualidad, ya contamos en el uso cotidiano con discos duros de más de 3
TB, esto es 3072 GB, (3145728 MB)
En
2005 los primeros
teléfonos móviles que incluían discos duros fueron presentados por Samsung y Nokia, aunque no tuvieron mucho éxito ya que las memorias flash los acabaron desplazando, sobre todo por asuntos de fragilidad y superioridad.
Características de un disco duro
Las características que se deben tener en cuenta en un disco duro son:
- Tiempo medio de acceso: Tiempo medio que tarda la aguja en situarse en la pista y el sector deseado; es la suma del Tiempo medio de búsqueda (situarse en la pista),Tiempo de lectura/escritura y la Latencia media (situarse en el sector).
- Tiempo medio de búsqueda: Tiempo medio que tarda la aguja en situarse en la pista deseada; es la mitad del tiempo empleado por la aguja en ir desde la pista más periférica hasta la más central del disco.
- Tiempo de lectura/escritura: Tiempo medio que tarda el disco en leer o escribir nueva información: Depende de la cantidad de información que se quiere leer o escribir, el tamaño de bloque, el número de cabezales, el tiempo por vuelta y la cantidad de sectores por pista.
- Latencia media: Tiempo medio que tarda la aguja en situarse en el sector deseado; es la mitad del tiempo empleado en una rotación completa del disco.
- Velocidad de rotación: Revoluciones por minuto de los platos. A mayor velocidad de rotación, menor latencia media.
- Tasa de transferencia: Velocidad a la que puede transferir la información a la computadora una vez la aguja está situada en la pista y sector correctos. Puede ser velocidad sostenida o de pico.
Otras características son:
] Estructura física
Componentes de un
disco duro. De izquierda a derecha, fila superior: tapa, carcasa,
plato,
eje; fila inferior: espuma aislante,
circuito impreso de control, cabezal de lectura / escritura, actuador e imán, tornillos.
Interior de un disco duro; se aprecia la superficie de un
plato y el cabezal de lectura/escritura retraído, a la izquierda.
Dentro de un disco duro hay uno o varios discos (de aluminio o cristal) concéntricos llamados platos (normalmente entre 2 y 4, aunque pueden ser hasta 6 ó 7 según el modelo), y que giran todos a la vez sobre el mismo eje, al que están unidos. El cabezal(dispositivo de lectura y escritura) está formado por un conjunto de brazos paralelos a los platos, alineados verticalmente y que también se desplazan de forma simultánea, en cuya punta están las cabezas de lectura/escritura. Por norma general hay una cabeza de lectura/escritura para cada superficie de cada plato. Los cabezales pueden moverse hacia el interior o el exterior de los platos, lo cual combinado con la rotación de los mismos permite que los cabezales puedan alcanzar cualquier posición de la superficie de los platos..
Cada plato posee dos
ojos, y es necesaria una cabeza de lectura/escritura
para cada cara. Si se observa el esquema
Cilindro-Cabeza-Sector de más abajo, a primera vista se ven 4 brazos, uno para cada plato. En realidad, cada uno de los brazos es doble, y contiene 2 cabezas: una para leer la cara superior del plato, y otra para leer la cara inferior. Por tanto, hay 8 cabezas para leer 4 platos, aunque por cuestiones comerciales, no siempre se usan todas las caras de los discos y existen discos duros con un número impar de cabezas, o con cabezas deshabilitadas. Las cabezas de lectura/escritura nunca tocan el disco, sino que pasan muy cerca (hasta a 3
nanómetros), debido a una finísima película de aire que se forma entre éstas y los platos cuando éstos giran (algunos discos incluyen un sistema que impide que los cabezales pasen por encima de los platos hasta que alcancen una velocidad de giro que garantice la formación de esta película). Si alguna de las cabezas llega a tocar una superficie de un plato, causaría muchos daños en él, rayándolo gravemente, debido a lo rápido que giran los platos (uno de 7.200
revoluciones por minuto se mueve a 129
km/h en el borde de un disco de 3,5 pulgadas).
Direccionamiento
Cilindro, Cabeza y Sector
Pista (A), Sector (B), Sector de una pista (C),
Clúster (D)
Hay varios conceptos para referirse a zonas del disco:
- Plato: cada uno de los discos que hay dentro del disco duro.
- Cara: cada uno de los dos lados de un plato.
- Cabeza: número de cabezales.
- Pistas: una circunferencia dentro de una cara; la pista 0 está en el borde exterior.
- Cilindro: conjunto de varias pistas; son todas las circunferencias que están alineadas verticalmente (una de cada cara).
- Sector : cada una de las divisiones de una pista. El tamaño del sector no es fijo, siendo el estándar actual 512 bytes, aunque próximamente serán 4 KiB. Antiguamente el número de sectores por pista era fijo, lo cual desaprovechaba el espacio significativamente, ya que en las pistas exteriores pueden almacenarse más sectores que en las interiores. Así, apareció la tecnología ZBR (grabación de bits por zonas) que aumenta el número de sectores en las pistas exteriores, y utiliza más eficientemente el disco duro. Así las pistas se agrupan en zonas de pistas de igual cantidad de sectores. Cuanto más lejos del centro de cada plato se encuentra una zona, ésta contiene una mayor cantidad de sectores en sus pistas. Además medianteZBR, cuando se leen sectores de cilindros más externos la tasa de transferencia de bits por segundo es mayor; por tener la misma velocidad angular que cilindros internos pero mayor cantidad de sectores.3
El primer sistema de direccionamiento que se usó fue el
CHS (
cilindro-cabeza-sector), ya que con estos tres valores se puede situar un dato cualquiera del disco. Más adelante se creó otro sistema más sencillo:
LBA (
direccionamiento lógico de bloques), que consiste en dividir el disco entero en
sectores y asignar a cada uno un único número. Éste es el que actualmente se usa.
Tipos de conexión
Si hablamos de disco duro podemos citar los distintos tipos de conexión que poseen los mismos con la placa base, es decir pueden ser
SATA,
IDE,
SCSI o
SAS:
- IDE: Integrated Drive Electronics ("Dispositivo electrónico integrado") o ATA (Advanced Technology Attachment), controla los dispositivos de almacenamiento masivo de datos, como los discos duros y ATAPI (Advanced Technology Attachment Packet Interface) Hasta aproximadamente el 2004, el estándar principal por su versatilidad y asequibilidad. Son planos, anchos y alargados.
- SCSI: Son interfaces preparadas para discos duros de gran capacidad de almacenamiento y velocidad de rotación. Se presentan bajo tres especificaciones: SCSI Estándar (Standard SCSI), SCSI Rápido (Fast SCSI) y SCSI Ancho-Rápido (Fast-Wide SCSI). Su tiempo medio de acceso puede llegar a 7 milisegundos y su velocidad de transmisión secuencial de información puede alcanzar teóricamente los 5 Mbit/s en los discos SCSI Estándares, los 10 Mbit/s en los discos SCSI Rápidos y los 20 Mbit/s en los discos SCSI Anchos-Rápidos (SCSI-2). Un controlador SCSI puede manejar hasta 7 discos duros SCSI (o 7 periféricos SCSI) con conexión tipo margarita (daisy-chain). A diferencia de los discos IDE, pueden trabajar asincrónicamente con relación al microprocesador, lo que posibilita una mayor velocidad de transferencia.
- SATA (Serial ATA): El más novedoso de los estándares de conexión, utiliza un bus serie para la transmisión de datos. Notablemente más rápido y eficiente que IDE. Existen tres versiones, SATA 1 con velocidad de transferencia de hasta 150 MB/s (hoy día descatalogado), SATA 2 de hasta 300 MB/s, el más extendido en la actualidad; y por último SATA 3 de hasta 600 MB/s el cual se está empezando a hacer hueco en el mercado. Físicamente es mucho más pequeño y cómodo que los IDE, además de permitirconexión en caliente.
- SAS (Serial Attached SCSI): Interfaz de transferencia de datos en serie, sucesor del SCSI paralelo, aunque sigue utilizando comandosSCSI para interaccionar con los dispositivos SAS. Aumenta la velocidad y permite la conexión y desconexión en caliente. Una de las principales características es que aumenta la velocidad de transferencia al aumentar el número de dispositivos conectados, es decir, puede gestionar una tasa de transferencia constante para cada dispositivo conectado, además de terminar con la limitación de 16 dispositivos existente en SCSI, es por ello que se vaticina que la tecnología SAS irá reemplazando a su predecesora SCSI. Además, el conector es el mismo que en la interfaz SATA y permite utilizar estos discos duros, para aplicaciones con menos necesidad de velocidad, ahorrando costes. Por lo tanto, las unidades SATA pueden ser utilizadas por controladoras SAS pero no a la inversa, una controladora SATA no reconoce discos SAS.
]Factor de Forma
El más temprano "factor de forma" de los discos duros, heredó sus dimensiones de las disqueteras. Pueden ser montados en los mismos chasis y así los discos duros con factor de forma, pasaron a llamarse coloquialmente tipos FDD "floppy-disk drives" (en inglés).
La compatibilidad del "factor de forma" continua siendo de 3½ pulgadas (8,89 cm) incluso después de haber sacado otros tipos de disquetes con unas dimensiones más pequeñas.
- 8 pulgadas: 241,3×117,5×362 mm (9,5×4,624×14,25 pulgadas).
En 1979, Shugart Associates sacó el primer factor de forma compatible con los disco duros, SA1000, teniendo las mismas dimensiones y siendo compatible con la interfaz de 8 pulgadas de las disqueteras. Había dos versiones disponibles, la de la misma altura y la de la mitad (58,7mm).
- 5,25 pulgadas: 146,1×41,4×203 mm (5,75×1,63×8 pulgadas). Este factor de forma es el primero usado por los discos duros de Seagate en 1980 con el mismo tamaño y altura máxima de los FDD de 5¼ pulgadas, por ejemplo: 82,5 mm máximo.
Éste es dos veces tan alto como el factor de 8 pulgadas, que comúnmente se usa hoy; por ejemplo: 41,4 mm (1,64 pulgadas). La mayoría de los modelos de unidades ópticas (DVD/CD) de 120 mm usan el tamaño del factor de forma de media altura de 5¼, pero también para discos duros. El modelo Quantum Bigfoot es el último que se usó a finales de los 90'.
- 3,5 pulgadas: 101,6×25,4×146 mm (4×1×5.75 pulgadas).
Este factor de forma es el primero usado por los discos duros de Rodine que tienen el mismo tamaño que las disqueteras de 3½, 41,4 mm de altura. Hoy ha sido en gran parte remplazado por la línea "slim" de 25,4mm (1 pulgada), o "low-profile" que es usado en la mayoría de los discos duros.
- 2,5 pulgadas: 69,85×9,5-15×100 mm (2,75×0,374-0,59×3,945 pulgadas).
Este factor de forma se introdujo por PrairieTek en 1988 y no se corresponde con el tamaño de las lectoras de disquete. Este es frecuentemente usado por los discos duros de los equipos móviles (portátiles, reproductores de música, etc...) y en 2008 fue reemplazado por unidades de 3,5 pulgadas de la clase multiplataforma. Hoy en día la dominante de este factor de forma son las unidades para portátiles de 9,5 mm, pero las unidades de mayor capacidad tienen una altura de 12,5 mm.
- 1,8 pulgadas: 54×8×71 mm.
Este factor de forma se introdujo por Integral Peripherals en 1993 y se involucró con ATA-7 LIF con las dimensiones indicadas y su uso se incrementa en reproductores de audio digital y su subnotebook. La variante original posee de 2GB a 5GB y cabe en una ranura de expansión de tarjeta de ordenador personal. Son usados normalmente en iPods y discos duros basados en MP3.
- 1 pulgadas: 42,8×5×36,4 mm.
Este factor de forma se introdujo en 1999 por IBM y Microdrive, apto para los slots tipo 2 de compact flash, Samsung llama al mismo factor como 1,3 pulgadas.
- 0,85 pulgadas: 24×5×32 mm.
Toshiba anunció este factor de forma el 8 de enero de 2004 para usarse en móviles y aplicaciones similares, incluyendo SD/MMC slot compatible con disco duro optimizado para vídeo y almacenamiento para micromóviles de 4G. Toshiba actualmente vende versiones de 4GB (MK4001MTD) y 8GB (MK8003MTD) 5 y tienen el Record Guinness del disco duro más pequeño.
Los principales fabricantes suspendieron la investigación de nuevos productos para 1 pulgada (1,3 pulgadas) y 0,85 pulgadas en 2007, debido a la caída de precios de las
memorias flash, aunque
Samsung introdujo en el 2008 con el SpidPoint A1 otra unidad de 1,3 pulgadas.
El nombre de "pulgada" para los factores de forma normalmente no identifica ningún producto actual (son especificadas en milímetros para los factores de forma más recientes), pero estos indican el tamaño relativo del disco, para interés de la continuidad histórica.
Estructura lógica
Dentro del disco se encuentran:
]Funcionamiento mecánico
Un disco duro suele tener:
- Platos en donde se graban los datos.
- Cabezal de lectura/escritura.
- Motor que hace girar los platos.
- Electroimán que mueve el cabezal.
- Circuito electrónico de control, que incluye: interfaz con la computadora, memoria caché.
- Bolsita desecante (gel de sílice) para evitar la humedad.
- Caja, que ha de proteger de la suciedad, motivo por el cual suele traer algún filtro de aire.
Integridad
Debido a la distancia extremadamente pequeña entre los cabezales y la superficie del disco, cualquier contaminación de los cabezales de lectura/escritura o las fuentes puede dar lugar a un accidente en los cabezales, un fallo del disco en el que el cabezal raya la superficie de la fuente, a menudo moliendo la fina película magnética y causando la pérdida de datos. Estos accidentes pueden ser causados por un fallo electrónico, un repentino corte en el suministro eléctrico, golpes físicos, el desgaste, la
corrosión o debido a que los cabezales o las fuentes sean de pobre fabricación.
El eje del sistema del disco duro depende de la presión del aire dentro del recinto para sostener los cabezales y su correcta altura mientras el disco gira. Un disco duro requiere un cierto rango de presiones de aire para funcionar correctamente. La conexión al entorno exterior y la presión se produce a través de un pequeño agujero en el recinto (cerca de 0,5 mm de diámetro) normalmente con un filtro en su interior (filtro de respiración, ver abajo). Si la presión del aire es demasiado baja, entonces no hay suficiente impulso para el cabezal, que se acerca demasiado al disco, y se da el riesgo de fallos y pérdidas de datos. Son necesarios discos fabricados especialmente para operaciones de gran altitud, sobre 3.000 m. Hay que tener en cuenta que los aviones modernos tienen una cabina presurizada cuya presión interior equivale normalmente a una altitud de 2.600 m como máximo. Por lo tanto los discos duros ordinarios se pueden usar de manera segura en los vuelos. Los discos modernos incluyen sensores de temperatura y se ajustan a las condiciones del entorno. Los agujeros de ventilación se pueden ver en todos los discos (normalmente tienen una pegatina a su lado que advierte al usuario de no cubrir el agujero. El aire dentro del disco operativo está en constante movimiento siendo barrido por la
fricción del plato. Este aire pasa a través de un filtro de recirculación interna para quitar cualquier contaminante que se hubiera quedado de su fabricación, alguna partícula o componente químico que de alguna forma hubiera entrado en el recinto, y cualquier partícula generada en una operación normal. Una
humedad muy alta durante un periodo largo puede corroer los cabezales y los platos.
Cabezal de disco duro IBM sobre el plato del disco
Para los cabezales resistentes al magnetismo grandes
(GMR) en particular, un incidente minoritario debido a la contaminación (que no se disipa la superficie magnética del disco) llega a dar lugar a un sobrecalentamiento temporal en el cabezal, debido a la fricción con la superficie del disco, y puede hacer que los datos no se puedan leer durante un periodo corto de tiempo hasta que la temperatura del cabezal se estabilice (también conocido como “aspereza térmica”, un problema que en parte puede ser tratado con el filtro electrónico apropiado de la señal de lectura).
Los componentes electrónicos del disco duro controlan el movimiento del accionador y la rotación del disco, y realiza lecturas y escrituras necesitadas por el controlador de disco. El
firmware de los discos modernos es capaz de programar lecturas y escrituras de forma eficiente en la superficie de los discos y de reasignar sectores que hayan fallado.
Presente y futuro
Actualmente la nueva generación de discos duros utiliza la tecnología de
grabación perpendicular (PMR), la cual permite mayor densidad de almacenamiento. También existen discos llamados "Ecológicos" (GP - Green Power), los cuales hacen un uso más eficiente de la energía.
Comparativa de Unidades de estado sólido y discos duros
Esos soportes son muy rápidos ya que no tienen partes móviles y consumen menos energía. Todos esto les hace muy fiables y físicamente duraderos. Sin embargo su costo por GB es aún muy elevado respecto al mismo coste de GB en un formato de tecnología de Disco Duro siendo un índice muy importante cuando hablamos de las altas necesidades de almacenamiento que hoy se miden en orden de Terabytes.
4
A pesar de ello la industria apuesta por este vía de solución tecnológica para el consumo doméstico
5 aunque se ha de considerar que estos sistemas han de ser integrados correctamente
6 tal y como se esta realizando en el campo de la alta computación.
7 Unido a la reducción progresiva de costes quizás esa tecnología recorra el camino de aplicarse como método general de archivo de datos informáticos energéticamente respetuosos con el medio natural si optimiza su función lógica dentro de los sistemas operativos actuales.
8
Los discos que no son discos: Las Unidades de estado sólido han sido categorizadas repetidas veces como "discos", cuando es totalmente incorrecto denominarlas así, puesto que a diferencia de sus predecesores, sus datos no se almacenan sobre superficies cilíndricas ni platos. Esta confusión conlleva habitualmente a creer que "SSD" significa
Solid State Disk, en vez de
Solid State Drive
Unidades híbridas
Las unidades híbridas son aquellas que combinan las ventajas de las unidades mecánicas convencionales con las de las unidades de estado sólido. Consisten en acoplar un conjunto de unidades de memoria flash dentro de la unidad mecánica, utilizando el área de estado sólido para el almacenamiento dinámico de datos de uso frecuente (determinado por el software de la unidad) y el área mecánica para el almacenamiento masivo de datos. Con esto se logra un rendimiento cercano al de unidades de estado sólido a un costo sustancialmente menor. En el mercado actual (2012), Seagate ofrece su modelo "Momentus XT" con esta tecnología.
9
]Fabricantes
Los recursos tecnológicos y el saber hacer requeridos para el desarrollo y la producción de discos modernos implica que desde
2007, más del 98% de los discos duros del mundo son fabricados por un conjunto de grandes empresas:
Seagate (que ahora es propietaria de
Maxtor y
Quantum),
Western Digital (propietaria de
Hitachi, a la que a su vez fue propietaria de la antigua división de fabricación de discos de
IBM) y
Fujitsu, que sigue haciendo
discos portátiles y discos de servidores, pero dejó de hacer discos para ordenadores de escritorio en
2001, y el resto lo vendió a Western Digital.
Toshiba es uno de los principales fabricantes de discos duros para
portátiles de 2,5 pulgadas y 1,8 pulgadas.
TrekStor es un fabricante alemán que en 2009 tuvo problemas de insolvencia, pero que actualmente sigue en activo.
ExcelStor es un pequeño fabricante chino de discos duros.
Decenas de ex-fabricantes de discos duros han terminado con sus empresas fusionadas o han cerrado sus divisiones de discos duros, a medida que la capacidad de los dispositivos y la demanda de los productos aumentó, los beneficios eran menores y el mercado sufrió un significativa consolidación a finales de
los 80 y finales de
los 90. La primera víctima en el mercado de los
PC fue
Computer Memories Inc.; después de un incidente con 20 MB defectuosos en discos en
1985, la reputación de CMI nunca se recuperó, y salieron del mercado de los discos duros en
1987. Otro notable fracaso fue el de
MiniScribe, quien quebró en
1990: después se descubrió que tenía en marcha un fraude e inflaba el número de ventas durante varios años. Otras muchas pequeñas compañías (como
Kalok,
Microscience, LaPine, Areal, Priam y PrairieTek) tampoco sobrevivieron a la expulsión, y habían desaparecido para
1993;
Micropolis fue capaz de aguantar hasta
1997, y
JTS, un recién llegado a escena, duró sólo unos años y desapareció hacia
1999, aunque después intentó fabricar discos duros en
India. Su vuelta a la fama se debió a la creación de un nuevo formato de tamaño de 3” para
portátiles.
Quantum e Integral también investigaron el formato de 3”, pero finalmente se dieron por vencidos.
Rodime fue también un importante fabricante durante la
década de los 80, pero dejó de hacer discos en la
década de los 90 en medio de la reestructuración y ahora se concentra en la tecnología de la concesión de licencias; tienen varias patentes relacionadas con el formato de 3,5“.
- 1988: Tandon vendió su división de fabricación de discos duros a Western Digital, que era un renombrado diseñador de controladores.
- 1989: Seagate compró el negocio de discos de alta calidad de Control Data, como parte del abandono de Control Data en la creación de hardware.
- 1990: Maxtor compró MiniScribe que estaba en bancarrota, haciéndolo el núcleo de su división de discos de gama baja.
- 1994: Quantum compró la división de almacenamiento de Digital Equipment otorgando al usuario una gama de discos de alta calidad llamada ProDrive, igual que la gama tape drive de Digital Linear Tape
- 1995: Conner Peripherals, que fue fundada por uno de los cofundadores de Seagate junto con personal de MiniScribe, anunciaron un fusión con Seagate, la cual se completó a principios de 1996.
- 1996: JTS se fusionó con Atari, permitiendo a JTS llevar a producción su gama de discos. Atari fue vendida a Hasbro en 1998, mientras que JTS sufrió una bancarrota en 1999.
- 2000: Quantum vendió su división de discos a Maxtor para concentrarse en las unidades de cintas y los equipos de respaldo.
- 2003: Siguiendo la controversia en los fallos masivos en su modelo Deskstar 75GXP, pioneer IBM vendió la mayor parte de su división de discos a Hitachi, renombrándose como Hitachi Global Storage Technologies, Hitachi GST.
- 2003: Western Digital compró Read-Rite Corp., quien producía los cabezales utilizados en los discos duros, por 95,4 millones de dólares en metálico.
- 2005: Seagate y Maxtor anuncian un acuerdo bajo el que Seagate adquiriría todo el stock de Maxtor. Esta adquisición fue aprobada por los cuerpos regulatorios, y cerrada el 19 de mayo de 2006.
- 2007: Western Digital adquiere Komag U.S.A., un fabricante del material que recubre los platos de los discos duros.
- 2009: Toshiba adquiere la división de HDD de Fujitsu y TrekStor se declara en bancarrota, aunque ese mismo año consiguen un nuevo inversor para mantener la empresa a flote.
- 2011: Western Digital adquiere Hitachi GST y Seagate compra la división de HDD de Samsung.
Fabricantes de discos duros